FAIRCHILD

SEMICONDUCTOR

74LVX240 Low Voltage Octal Buffer/Line Driver with **3-STATE Outputs**

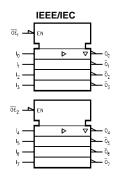
General Description

The LVX240 is an octal inverting buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver which provides improved PC board density. The inputs tolerate up to 7V allowing interface of 5V systems to 3V systems.

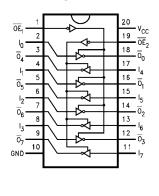
Features

- Input voltage translation from 5V to 3V
- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance

May 1993


Revised October 2003

Ordering Code:


Order Number	Package Number	Package Description
74LVX240M	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVX240SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVX240MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description]
$\overline{OE}_1, \overline{OE}_2$	3-STATE Output Enable Inputs	1
I ₀ –I ₇	Inputs	
$\overline{O}_0 - \overline{O}_7$	Outputs	

Truth Tables

Inp	Outputs	
OE ₁	I _n	(Pins 12, 14, 16, 18)
L	L	н
L	н	L
Н	х	Z
Inp	Outputs	
OE ₂	I _n	(Pins 3, 5, 7, 9)
-		
L	L	н
L	L H	H L

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Z = High Impedance

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (I_{IK}) V _I = -0.5V	–20 mA
DC Input Voltage (VI)	-0.5V to 7V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	$-0.5 V$ to $V_{CC} + 0.5 V$
DC Output Source	
or Sink Current (I _O)	±25 mA
DC V _{CC} or Ground Current	
(I _{CC} or I _{GND})	±75 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	180 mW

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to 3.6V
Input Voltage (V _I)	0V to 5.5V
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time ($\Delta t/\Delta V$)	0 ns/V to 100 ns/V

Note 1: Absolute Maximum Ratings are those values beyond which the safety to the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Vcc	$T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Cond	itions				
Gymbol	rarameter		Min Typ		Max	Min	Max	Onita	Conditions		
VIH	HIGH Level	2.0	1.5			1.5					
	Input Voltage	3.0	2.0			2.0		V			
		3.6	2.4			2.4					
VIL	LOW Level	2.0			0.5		0.5				
	Input Voltage	3.0			0.8		0.8	V			
		3.6			0.8		0.8				
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -50 \ \mu A$	
	Output Voltage	3.0	2.9	3.0		2.9		V		$I_{OH}=-50\;\mu A$	
		3.0	2.58			2.48				$I_{OH} = -4 \text{ mA}$	
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 50 \ \mu A$	
	Output Voltage	3.0		0.0	0.1		0.1	V		$I_{OL} = 50 \ \mu A$	
		3.0			0.36		0.44			$I_{OL} = 4 \text{ mA}$	
I _{OZ}	3-STATE Output	3.6			±0.25		±2.5	μΑ	$V_{IN} = V_{IH} \text{ or } V_{IL}$		
	Off-State Current								$V_{OUT} = V_{CC}$ or GND		
I _{IN}	Input Leakage Current	3.6			±0.1		±1.0	μA	V _{IN} = 5.5V or GND		
I _{CC}	Quiescent Supply Current	3.6			4.0		40.0	μΑ	$V_{IN} = V_{CC}$ or GN	D	

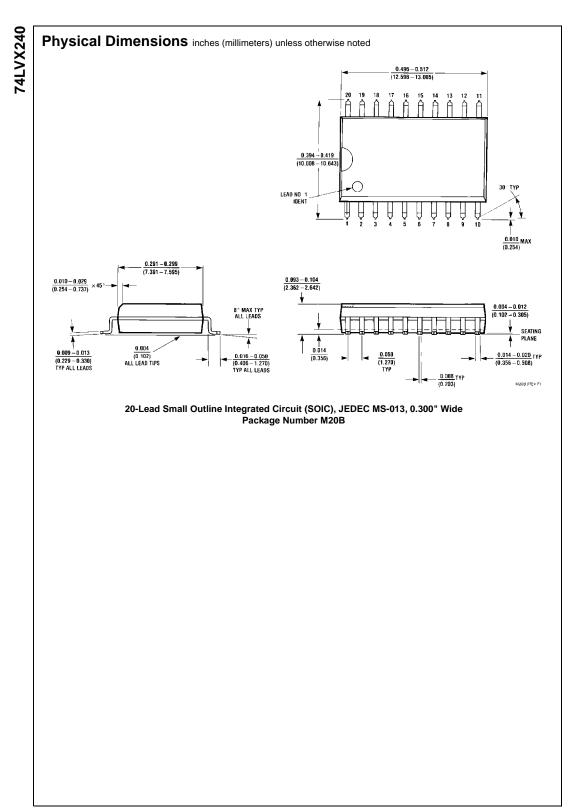
Noise Characteristics (Note 3)

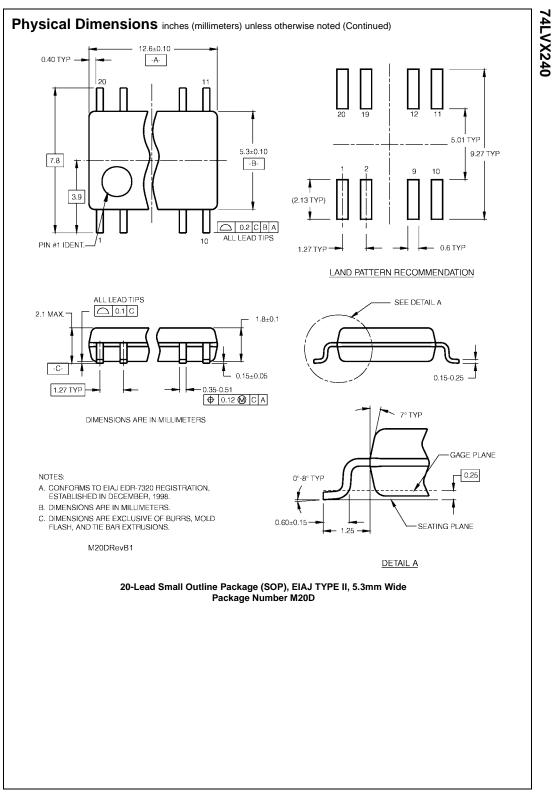
Symbol	Parameter	V _{cc}	$T_A = 25^{\circ}C$		Units	C _L (pF)	
	i didiletti	(V)	Тур	Limit	onno		
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.5	0.8	V	50	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.5	-0.8	V	50	
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	50	
V _{ILD}	Maximum LOW Level Dynamic Input Voltage			0.8	V	50	

Note 3: (Input $t_r = t_f = 3 \text{ ns}$)

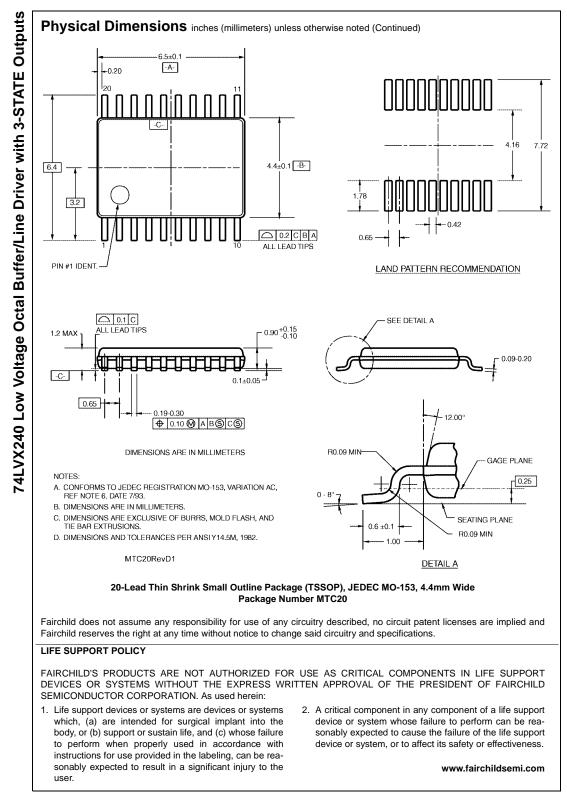
Symbol	Parameter	V _{cc}	T _A = +25°C			$T_A=-40^\circ C$ to $+85^\circ C$		Units	Conditions
		(V)	Min	Тур	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation	2.7		5.7	10.1	1.0	12.5		C _L = 15 pF
t _{PHL}	Delay Time			8.2	13.6	1.0	16.0	ns	$C_L = 50 \text{ pF}$
		$\textbf{3.3}\pm\textbf{0.3}$		4.3	6.2	1.0	7.5	115	C _L = 15 pF
				6.8	9.7	1.0	11.0		$C_L = 50 \text{ pF}$
t _{PZL}	3-STATE Output	2.7		7.1	13.8	1.0	16.5		$C_L = 15 \text{ pF}, R_L = 1 \text{ k}\Omega$
t _{PZH}	Enable Time			9.6	17.3	1.0	20.0	ns	$C_L = 50 \text{ pF}, \text{ R}_L = 1 \text{ k}\Omega$
		$\textbf{3.3}\pm\textbf{0.3}$		5.5	8.8	1.0	10.5	115	$C_L = 15 \text{ pF}, R_L = 1 k\Omega$
				8.0	12.3	1.0	14.0		$C_L = 50 \text{ pF}, \text{ R}_L = 1 \text{ k}\Omega$
t _{PLZ}	3-STATE Output	2.7		11.6	16.0	1.0	19.0	ns	$C_L = 50 \text{ pF}, \text{ R}_L = 1 \text{ k}\Omega$
t _{PHZ}	Disable Time	3.3 ± 0.3		9.7	11.4	1.0	13.0	115	$C_L = 50 \text{ pF}, \text{ R}_L = 1 \text{k}\Omega$
t _{OSLH}	Output to Output	2.7			1.5		1.5	ns	$C_L = 50 \text{ pF}$
tOSHL	Skew (Note 4)	3.3			1.5		1.5	115	

Note 4: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHm} - t_{PLHn}|$, $t_{OSHL} = |t_{PHLm} - t_{PHLn}|$


Capacitance


Symbol	Parameter		T _A = +25°C		$T_A = -40^{\circ}C$	Units	
Gymbol	i arameter	Min	Тур	Max	Min	Max	onna
C _{IN} I	Input Capacitance		4	10		10	pF
C _{OUT}	Output Capacitance		6				pF
C _{PD} Power Dissipation Capacitance (Note 5)			17	10			pF

Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{IN} + I_{CC}}{8 \text{ (per bit)}}$

www.fairchildsemi.com

www.fairchildsemi.com

www.fairchildsemi.com